Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the bijectivity of families of exponential/generalized polynomial maps (1804.01851v3)

Published 29 Mar 2018 in math.AG

Abstract: We start from a parametrized system of $d$ generalized polynomial equations (with real exponents) for $d$ positive variables, involving $n$ generalized monomials with $n$ positive parameters. Existence and uniqueness of a solution for all parameters and for all right-hand sides is equivalent to the bijectivity of (every element of) a family of generalized polynomial/exponential maps. We characterize the bijectivity of the family of exponential maps in terms of two linear subspaces arising from the coefficient and exponent matrices, respectively. In particular, we obtain conditions in terms of sign vectors of the two subspaces and a nondegeneracy condition involving the exponent subspace itself. Thereby, all criteria can be checked effectively. Moreover, we characterize when the existence of a unique solution is robust with respect to small perturbations of the exponents or/and the coefficients. In particular, we obtain conditions in terms of sign vectors of the linear subspaces or, alternatively, in terms of maximal minors of the coefficient and exponent matrices. Finally, we present applications to chemical reaction networks with (generalized) mass-action kinetics.

Summary

We haven't generated a summary for this paper yet.