Hyperbolic and cubical rigidities of Thompson's group V (1804.01791v2)
Abstract: In this article, we state and prove a general criterion allowing us to show that some groups are hyperbolically elementary, meaning that every isometric action of one of these groups on a Gromov-hyperbolic space either fixes a point at infinity or has bounded orbits. Also, we show how such a hyperbolic rigidity leads to fixed-point properties on finite-dimensional CAT(0) cube complexes. As an application, we prove that Thompson's group $V$ is hyperbolically elementary, and we deduce that it satisfies Property $(FW_{\infty})$, ie., every isometric action of $V$ on a finite-dimensional CAT(0) cube complex fixes a point. It provides the first example of a (finitely presented) group acting properly on an infinite-dimensional CAT(0) cube complex such that all its actions on finite-dimensional CAT(0) cube complexes have global fixed points.