Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Calculation of Fundamental Groups in Homotopy Type Theory by Means of Computational Paths (1804.01413v2)

Published 3 Apr 2018 in cs.LO

Abstract: One of the most interesting entities of homotopy type theory is the identity type. It gives rise to an interesting interpretation of the equality, since one can semantically interpret the equality between two terms of the same type as a collection of homotopical paths between points of the same space. Since this is only a semantical interpretation, the addition of paths to the syntax of homotopy type theory has been recently proposed by De Queiroz, Ramos and De Oliveira . In these works, the authors propose an entity known as `computational path', proposed by De Queiroz and Gabbay in 1994, and show that it can be used to formalize the identity type. We have found that it is possible to use these computational paths as a tool to achieve one central result of algebraic topology and homotopy type theory: the calculation of fundamental groups of surfaces. We review the concept of computational paths and the $LND_{EQ}-TRS$, which is a term rewriting system proposed by De Oliveira in 1994 to map redundancies between computational paths. We then proceed to calculate the fundamental group of the circle, cylinder, M{\"o}bius band, torus and the real projective plane. Moreover, we show that the use of computational paths make these calculations simple and straightforward, whereas the same result is much harder to obtain using the traditional code-encode-decode approach of homotopy type theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.