Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace-Orbit Randomized Decomposition for Low-rank Matrix Approximation (1804.00462v1)

Published 2 Apr 2018 in cs.NA and eess.SP

Abstract: An efficient, accurate and reliable approximation of a matrix by one of lower rank is a fundamental task in numerical linear algebra and signal processing applications. In this paper, we introduce a new matrix decomposition approach termed Subspace-Orbit Randomized singular value decomposition (SOR-SVD), which makes use of random sampling techniques to give an approximation to a low-rank matrix. Given a large and dense data matrix of size $m\times n$ with numerical rank $k$, where $k \ll \text{min} {m,n}$, the algorithm requires a few passes through data, and can be computed in $O(mnk)$ floating-point operations. Moreover, the SOR-SVD algorithm can utilize advanced computer architectures, and, as a result, it can be optimized for maximum efficiency. The SOR-SVD algorithm is simple, accurate, and provably correct, and outperforms previously reported techniques in terms of accuracy and efficiency. Our numerical experiments support these claims.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maboud F. Kaloorazi (4 papers)
  2. Rodrigo C. de Lamare (96 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.