Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copula Variational Bayes inference via information geometry (1803.10998v1)

Published 29 Mar 2018 in cs.IT, math.IT, and stat.ML

Abstract: Variational Bayes (VB), also known as independent mean-field approximation, has become a popular method for Bayesian network inference in recent years. Its application is vast, e.g. in neural network, compressed sensing, clustering, etc. to name just a few. In this paper, the independence constraint in VB will be relaxed to a conditional constraint class, called copula in statistics. Since a joint probability distribution always belongs to a copula class, the novel copula VB (CVB) approximation is a generalized form of VB. Via information geometry, we will see that CVB algorithm iteratively projects the original joint distribution to a copula constraint space until it reaches a local minimum Kullback-Leibler (KL) divergence. By this way, all mean-field approximations, e.g. iterative VB, Expectation-Maximization (EM), Iterated Conditional Mode (ICM) and k-means algorithms, are special cases of CVB approximation. For a generic Bayesian network, an augmented hierarchy form of CVB will also be designed. While mean-field algorithms can only return a locally optimal approximation for a correlated network, the augmented CVB network, which is an optimally weighted average of a mixture of simpler network structures, can potentially achieve the globally optimal approximation for the first time. Via simulations of Gaussian mixture clustering, the classification's accuracy of CVB will be shown to be far superior to that of state-of-the-art VB, EM and k-means algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.