Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density Estimation in Uncertainty Propagation Problems Using a Surrogate Model (1803.10991v3)

Published 29 Mar 2018 in math.NA, cs.NA, and physics.comp-ph

Abstract: The effect of uncertainties and noise on a quantity of interest (model output) is often better described by its probability density function (PDF) than by its moments. Although density estimation is a common task, the adequacy of approximation methods (surrogate models) for density estimation has not been analyzed before in the uncertainty-quantification (UQ) literature. In this paper, we first show that standard surrogate models (such as generalized polynomial chaos), which are highly accurate for moment estimation, might completely fail to approximate the PDF, even for one-dimensional noise. This is because density estimation requires that the surrogate model accurately approximates the gradient of the quantity of interest, and not just the quantity of interest itself. Hence, we develop a novel spline-based algorithm for density-estimation whose convergence rate in $Lq$ is polynomial in the sampling resolution. This convergence rate is better than that of standard statistical density-estimation methods (such as histograms and kernel density estimators) at dimensions $1 \leq d\leq \frac{5}{2}m$, where $m$ is the spline order. Furthermore, we obtain the convergence rate for density estimation with any surrogate model that approximates the quantity of interest and its gradient in $L{\infty}$. Finally, we demonstrate our algorithm for problems in nonlinear optics and fluid dynamics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.