Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary Labeling for Rectangular Diagrams (1803.10812v1)

Published 28 Mar 2018 in cs.CG

Abstract: Given a set of $n$ points (sites) inside a rectangle $R$ and $n$ points (label locations or ports) on its boundary, a boundary labeling problem seeks ways of connecting every site to a distinct port while achieving different labeling aesthetics. We examine the scenario when the connecting lines (leaders) are drawn as axis-aligned polylines with few bends, every leader lies strictly inside $R$, no two leaders cross, and the sum of the lengths of all the leaders is minimized. In a $k$-sided boundary labeling problem, where $1\le k\le 4$, the label locations are located on the $k$ consecutive sides of $R$. In this paper, we develop an $O(n3\log n)$-time algorithm for 2-sided boundary labeling, where the leaders are restricted to have one bend. This improves the previously best known $O(n8\log n)$-time algorithm of Kindermann et al. (Algorithmica, 76(1):225-258, 2016). We show the problem is polynomial-time solvable in more general settings such as when the ports are located on more than two sides of $R$, in the presence of obstacles, and even when the objective is to minimize the total number of bends. Our results improve the previous algorithms on boundary labeling with obstacles, as well as provide the first polynomial-time algorithms for minimizing the total leader length and number of bends for 3- and 4-sided boundary labeling. These results settle a number of open questions on the boundary labeling problems (Wolff, Handbook of Graph Drawing, Chapter 23, Table 23.1, 2014).

Citations (4)

Summary

We haven't generated a summary for this paper yet.