Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical study of goal-oriented error control for stabilized finite element methods (1803.10643v1)

Published 27 Mar 2018 in math.NA

Abstract: The efficient and reliable approximation of convection-dominated problems continues to remain a challenging task. To overcome the difficulties associated with the discretization of convection-dominated equations, stabilization techniques and a posteriori error control mechanisms with mesh adaptivity were developed and studied in the past. Nevertheless, the derivation of robust a posteriori error estimates for standard quantities and in computable norms is still an unresolved problem and under investigation. Here we combine the Dual Weighted Residual (DWR) method for goal-oriented error control with stabilized finite element methods. By a duality argument an error representation is derived on that an adaptive strategy is built. The key ingredient of this work is the application of a higher order discretization of the dual problem in order to make a robust error control for user-chosen quantities of interest feasible. By numerical experiments in 2D and 3D we illustrate that this interpretation of the DWR methodology is capable to resolve layers and sharp fronts with high accuracy and to further reduce spurious oscillations.

Summary

We haven't generated a summary for this paper yet.