Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPGA Implementations of 3D-SIMD Processor Architecture for Deep Neural Networks Using Relative Indexed Compressed Sparse Filter Encoding Format and Stacked Filters Stationary Flow (1803.10548v3)

Published 28 Mar 2018 in cs.CV

Abstract: It is a challenging task to deploy computationally and memory intensive State-of-the-art deep neural networks (DNNs) on embedded systems with limited hardware resources and power budgets. Recently developed techniques like Deep Compression make it possible to fit large DNNs, such as AlexNet and VGGNet, fully in on-chip SRAM. But sparse networks compressed using existing encoding formats, like CSR or CSC, complex the computation at runtime due to their irregular memory access characteristics. In [1], we introduce a computation dataflow, stacked filters stationary dataflow (SFS), and a corresponding data encoding format, relative indexed compressed sparse filter format (CSF), to make the best of data sparsity, and simplify data handling at execution time. In this paper we present FPGA implementations of these methods. We implement several compact streaming fully connected (FC) and Convolutional (CONV) neural network processors to show their efficiency. Comparing with the state-of-the-art results [2,3,4], our methods achieve at least 2x improvement for computation efficiency per PE on most layers. Especially, our methods achieve 8x improvement on AlexNet layer CONV4 with 384 filters, and 11x improvement on VGG16 layer CONV5-3 with 512 filters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.