Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mesoscopic linear statistics of Wigner matrices of mixed symmetry class (1803.10544v3)

Published 28 Mar 2018 in math.PR, math-ph, and math.MP

Abstract: We prove a central limit theorem for the mesoscopic linear statistics of $N\times N$ Wigner matrices $H$ satisfying $\mathbb{E}|H_{ij}|2=1/N$ and $\mathbb{E} H_{ij}2= \sigma /N$, where $\sigma \in [-1,1]$. We show that on all mesoscopic scales $\eta$ ($1/N \ll \eta \ll 1$), the linear statistics of $H$ have a sharp transition at $1-\sigma \sim \eta$. As an application, we identify the mesoscopic linear statistics of Dyson's Brownian motion $H_t$ started from a real symmetric Wigner matrix $H_0$ at any nonnegative time $t \in [0,\infty]$. In particular, we obtain the transition from the central limit theorem for GOE to the one for GUE at time $t \sim \eta$.

Summary

We haven't generated a summary for this paper yet.