Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervising Unsupervised Learning with Evolutionary Algorithm in Deep Neural Network (1803.10397v1)

Published 28 Mar 2018 in stat.ML, cs.LG, and cs.NE

Abstract: A method to control results of gradient descent unsupervised learning in a deep neural network by using evolutionary algorithm is proposed. To process crossover of unsupervisedly trained models, the algorithm evaluates pointwise fitness of individual nodes in neural network. Labeled training data is randomly sampled and breeding process selects nodes by calculating degree of their consistency on different sets of sampled data. This method supervises unsupervised training by evolutionary process. We also introduce modified Restricted Boltzmann Machine which contains repulsive force among nodes in a neural network and it contributes to isolate network nodes each other to avoid accidental degeneration of nodes by evolutionary process. These new methods are applied to document classification problem and it results better accuracy than a traditional fully supervised classifier implemented with linear regression algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Takeshi Inagaki (2 papers)

Summary

We haven't generated a summary for this paper yet.