Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topic Modeling Based Multi-modal Depression Detection (1803.10384v1)

Published 28 Mar 2018 in cs.CL, cs.IR, cs.LG, cs.SD, and eess.AS

Abstract: Major depressive disorder is a common mental disorder that affects almost 7% of the adult U.S. population. The 2017 Audio/Visual Emotion Challenge (AVEC) asks participants to build a model to predict depression levels based on the audio, video, and text of an interview ranging between 7-33 minutes. Since averaging features over the entire interview will lose most temporal information, how to discover, capture, and preserve useful temporal details for such a long interview are significant challenges. Therefore, we propose a novel topic modeling based approach to perform context-aware analysis of the recording. Our experiments show that the proposed approach outperforms context-unaware methods and the challenge baselines for all metrics.

Citations (125)

Summary

We haven't generated a summary for this paper yet.