Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-thinking EEG-based non-invasive brain interfaces: modeling and analysis (1803.10318v1)

Published 27 Mar 2018 in q-bio.NC, cs.HC, and cs.SY

Abstract: Brain interfaces are cyber-physical systems that aim to harvest information from the (physical) brain through sensing mechanisms, extract information about the underlying processes, and decide/actuate accordingly. Nonetheless, the brain interfaces are still in their infancy, but reaching to their maturity quickly as several initiatives are released to push forward their development (e.g., NeuraLink by Elon Musk and `typing-by-brain' by Facebook). This has motivated us to revisit the design of EEG-based non-invasive brain interfaces. Specifically, current methodologies entail a highly skilled neuro-functional approach and evidence-based \emph{a priori} knowledge about specific signal features and their interpretation from a neuro-physiological point of view. Hereafter, we propose to demystify such approaches, as we propose to leverage new time-varying complex network models that equip us with a fractal dynamical characterization of the underlying processes. Subsequently, the parameters of the proposed complex network models can be explained from a system's perspective, and, consecutively, used for classification using machine learning algorithms and/or actuation laws determined using control system's theory. Besides, the proposed system identification methods and techniques have computational complexities comparable with those currently used in EEG-based brain interfaces, which enable comparable online performances. Furthermore, we foresee that the proposed models and approaches are also valid using other invasive and non-invasive technologies. Finally, we illustrate and experimentally evaluate this approach on real EEG-datasets to assess and validate the proposed methodology. The classification accuracies are high even on having less number of training samples.

Citations (34)

Summary

We haven't generated a summary for this paper yet.