Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point-like perturbed fractional Laplacians through shrinking potentials of finite range (1803.10191v2)

Published 27 Mar 2018 in math.FA, math-ph, and math.MP

Abstract: We reconstruct the rank-one, singular (point-like) perturbations of the $d$-dimensional fractional Laplacian in the physically meaningful norm-resolvent limit of fractional Schr\"{o}dinger operators with regular potentials centred around the perturbation point and shrinking to a delta-like shape. We analyse both the possible regimes, the resonance-driven and the resonance-independent limit, depending on the power of the fractional Laplacian and the spatial dimension. To this aim, we also qualify the notion of zero-energy resonance for Schr\"{o}dinger operators formed by a fractional Laplacian and a regular potential.

Summary

We haven't generated a summary for this paper yet.