2000 character limit reached
Point-like perturbed fractional Laplacians through shrinking potentials of finite range (1803.10191v2)
Published 27 Mar 2018 in math.FA, math-ph, and math.MP
Abstract: We reconstruct the rank-one, singular (point-like) perturbations of the $d$-dimensional fractional Laplacian in the physically meaningful norm-resolvent limit of fractional Schr\"{o}dinger operators with regular potentials centred around the perturbation point and shrinking to a delta-like shape. We analyse both the possible regimes, the resonance-driven and the resonance-independent limit, depending on the power of the fractional Laplacian and the spatial dimension. To this aim, we also qualify the notion of zero-energy resonance for Schr\"{o}dinger operators formed by a fractional Laplacian and a regular potential.