Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Adaptive Sampling for Kernel Matrix Approximation (1803.10172v1)

Published 27 Mar 2018 in stat.ML, cs.DS, and cs.LG

Abstract: Most kernel-based methods, such as kernel or Gaussian process regression, kernel PCA, ICA, or $k$-means clustering, do not scale to large datasets, because constructing and storing the kernel matrix $\mathbf{K}n$ requires at least $\mathcal{O}(n2)$ time and space for $n$ samples. Recent works show that sampling points with replacement according to their ridge leverage scores (RLS) generates small dictionaries of relevant points with strong spectral approximation guarantees for $\mathbf{K}_n$. The drawback of RLS-based methods is that computing exact RLS requires constructing and storing the whole kernel matrix. In this paper, we introduce SQUEAK, a new algorithm for kernel approximation based on RLS sampling that sequentially processes the dataset, storing a dictionary which creates accurate kernel matrix approximations with a number of points that only depends on the effective dimension $d{eff}(\gamma)$ of the dataset. Moreover since all the RLS estimations are efficiently performed using only the small dictionary, SQUEAK is the first RLS sampling algorithm that never constructs the whole matrix $\mathbf{K}n$, runs in linear time $\widetilde{\mathcal{O}}(nd{eff}(\gamma)3)$ w.r.t. $n$, and requires only a single pass over the dataset. We also propose a parallel and distributed version of SQUEAK that linearly scales across multiple machines, achieving similar accuracy in as little as $\widetilde{\mathcal{O}}(\log(n)d_{eff}(\gamma)3)$ time.

Citations (25)

Summary

We haven't generated a summary for this paper yet.