Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A joint model for multiple dynamic processes and clinical endpoints: application to Alzheimer's disease (1803.10043v2)

Published 27 Mar 2018 in stat.ME

Abstract: As other neurodegenerative diseases, Alzheimer's disease, the most frequent dementia in the elderly, is characterized by multiple progressive impairments in the brain structure and in clinical functions such as cognitive functioning and functional disability. Until recently, these components were mostly studied independently since no joint model for multivariate longitudinal data and time to event was available in the statistical community. Yet, these components are fundamentally inter-related in the degradation process towards dementia and should be analyzed together. We thus propose a joint model to simultaneously describe the dynamics of multiple correlated components. Each component, defined as a latent process, is measured by one or several continuous markers (not necessarily Gaussian). Rather than considering the associated time to diagnosis as in standard joint models, we assume diagnosis corresponds to the passing above a covariate-specific threshold (to be estimated) of a pathological process which is modelled as a combination of the component-specific latent processes. This definition captures the clinical complexity of diagnoses such as dementia diagnosis but also benefits from simplifications for the computation of Maximum Likelihood Estimates. We show that the model and estimation procedure can also handle competing clinical endpoints. The estimation procedure, implemented in a R package, is validated by simulations and the method is illustrated on a large French population-based cohort of cerebral aging in which we focused on the dynamics of three clinical manifestations and the associated risk of dementia and death before dementia.

Summary

We haven't generated a summary for this paper yet.