Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two- and four-dimensional representations of the PT- and CPT-symmetric fermionic algebras (1803.10034v1)

Published 27 Mar 2018 in quant-ph, hep-th, math-ph, and math.MP

Abstract: Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that $T2=-1$ for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators $\eta$, which are quadratically nilpotent ($\eta2=0$), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: $\eta\eta{PT}+\eta{PT}\eta=-1$, where $\eta{PT}$ is the PT adjoint of $\eta$, and $\eta\eta{CPT}+\eta{CPT}\eta=1$, where $\eta{CPT}$ is the CPT adjoint of $\eta$. This paper presents matrix representations for the operator $\eta$ and its PT and CPT adjoints in two and four dimensions. A PT-symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.

Summary

We haven't generated a summary for this paper yet.