Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A statistical mechanics approach to de-biasing and uncertainty estimation in LASSO for random measurements (1803.09927v1)

Published 27 Mar 2018 in stat.ME, cond-mat.stat-mech, and physics.data-an

Abstract: In high-dimensional statistical inference in which the number of parameters to be estimated is larger than that of the holding data, regularized linear estimation techniques are widely used. These techniques have, however, some drawbacks. First, estimators are biased in the sense that their absolute values are shrunk toward zero because of the regularization effect. Second, their statistical properties are difficult to characterize as they are given as numerical solutions to certain optimization problems. In this manuscript, we tackle such problems concerning LASSO, which is a widely used method for sparse linear estimation, when the measurement matrix is regarded as a sample from a rotationally invariant ensemble. We develop a new computationally feasible scheme to construct a de-biased estimator with a confidence interval and conduct hypothesis testing for the null hypothesis that a certain parameter vanishes. It is numerically confirmed that the proposed method successfully de-biases the LASSO estimator and constructs confidence intervals and p-values by experiments for noisy linear measurements.

Summary

We haven't generated a summary for this paper yet.