Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Nodal Lengths and Wiener Chaos (1803.09716v1)

Published 26 Mar 2018 in math.PR, math-ph, and math.MP

Abstract: In this survey we collect some of the recent results on the "nodal geometry" of random eigenfunctions on Riemannian surfaces. We focus on the asymptotic behavior, for high energy levels, of the nodal length of Gaussian Laplace eigenfunctions on the torus (arithmetic random waves) and on the sphere (random spherical harmonics). We give some insight on both Berry's cancellation phenomenon and the nature of nodal length second order fluctuations (non-Gaussian on the torus and Gaussian on the sphere) in terms of chaotic components. Finally we consider the general case of monochromatic random waves, i.e. Gaussian random linear combination of eigenfunctions of the Laplacian on a compact Riemannian surface with frequencies from a short interval, whose scaling limit is Berry's Random Wave Model. For the latter we present some recent results on the asymptotic distribution of its nodal length in the high energy limit (equivalently, for growing domains).

Summary

We haven't generated a summary for this paper yet.