Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Goldbach's Function Approximation Using Deep Learning (1803.09237v1)

Published 25 Mar 2018 in cs.LG and stat.ML

Abstract: Goldbach conjecture is one of the most famous open mathematical problems. It states that every even number, bigger than two, can be presented as a sum of 2 prime numbers. % In this work we present a deep learning based model that predicts the number of Goldbach partitions for a given even number. Surprisingly, our model outperforms all state-of-the-art analytically derived estimations for the number of couples, while not requiring prime factorization of the given number. We believe that building a model that can accurately predict the number of couples brings us one step closer to solving one of the world most famous open problems. To the best of our knowledge, this is the first attempt to consider machine learning based data-driven methods to approximate open mathematical problems in the field of number theory, and hope that this work will encourage such attempts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.