Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asynchronous Gradient-Push

Published 23 Mar 2018 in cs.MA, cs.SY, and math.OC | (1803.08950v3)

Abstract: We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents' local functions. We propose an algorithm wherein each agent operates asynchronously and independently of the other agents. When the local functions are strongly-convex with Lipschitz-continuous gradients, we show that the iterates at each agent converge to a neighborhood of the global minimum, where the neighborhood size depends on the degree of asynchrony in the multi-agent network. When the agents work at the same rate, convergence to the global minimizer is achieved. Numerical experiments demonstrate that Asynchronous Gradient-Push can minimize the global objective faster than state-of-the-art synchronous first-order methods, is more robust to failing or stalling agents, and scales better with the network size.

Citations (60)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.