Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting decomposable polynomials with integer coefficients (1803.08755v3)

Published 23 Mar 2018 in math.NT

Abstract: A polynomial over a ring is called decomposable if it is a composition of two nonlinear polynomials. In this paper, we obtain sharp lower and upper bounds for the number of decomposable polynomials with integer coefficients of fixed degree and bounded height. Moreover, we obtain asymptotic formulas for the number of decomposable monic polynomials of even degree. For example, the number of monic sextic integer polynomials which are decomposable and of height at most $H$ is asymptotic to $(16\zeta(3)-5/4)H3$ as $H \to \infty$.

Summary

We haven't generated a summary for this paper yet.