Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Price of Uncertainty: Chance-constrained OPF vs. In-hindsight OPF (1803.08711v2)

Published 23 Mar 2018 in math.OC and cs.SY

Abstract: The operation of power systems has become more challenging due to feed-in of volatile renewable energy sources. Chance-constrained optimal power flow (ccOPF) is one possibility to explicitly consider volatility via probabilistic uncertainties resulting in mean-optimal feedback policies. These policies are computed before knowledge of the realization of the uncertainty is available. On the other hand, the hypothetical case of computing the power injections knowing every realization beforehand---called in-hindsight OPF(hOPF)---cannot be outperformed w.r.t. costs and constraint satisfaction. In this paper, we investigate how ccOPF feedback relates to the full-information hOPF. To this end, we introduce different dimensions of the price of uncertainty. Using mild assumptions on the uncertainty we present sufficient conditions when ccOPF is identical to hOPF. We suggest using the total variational distance of probability densities to quantify the performance gap of hOPF and ccOPF. Finally, we draw upon a tutorial example to illustrate our results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.