Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric inference on Lévy measures of compound Poisson-driven Ornstein-Uhlenbeck processes under macroscopic discrete observations (1803.08671v5)

Published 23 Mar 2018 in stat.ME

Abstract: This study examines a nonparametric inference on a stationary L\'evy-driven Ornstein-Uhlenbeck (OU) process $X = (X_{t})_{t \geq 0}$ with a compound Poisson subordinator. We propose a new spectral estimator for the L\'evy measure of the L\'evy-driven OU process $X$ under macroscopic observations. We also derive, for the estimator, multivariate central limit theorems over a finite number of design points, and high-dimensional central limit theorems in the case wherein the number of design points increases with an increase in the sample size. Built on these asymptotic results, we develop methods to construct confidence bands for the L\'evy measure and propose a practical method for bandwidth selection.

Summary

We haven't generated a summary for this paper yet.