Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature of Hypergraphs via Multi-Marginal Optimal Transport (1803.08584v1)

Published 22 Mar 2018 in cs.IT, cs.DM, cs.SI, math.IT, stat.AP, and stat.ML

Abstract: We introduce a novel definition of curvature for hypergraphs, a natural generalization of graphs, by introducing a multi-marginal optimal transport problem for a naturally defined random walk on the hypergraph. This curvature, termed \emph{coarse scalar curvature}, generalizes a recent definition of Ricci curvature for Markov chains on metric spaces by Ollivier [Journal of Functional Analysis 256 (2009) 810-864], and is related to the scalar curvature when the hypergraph arises naturally from a Riemannian manifold. We investigate basic properties of the coarse scalar curvature and obtain several bounds. Empirical experiments indicate that coarse scalar curvatures are capable of detecting "bridges" across connected components in hypergraphs, suggesting it is an appropriate generalization of curvature on simple graphs.

Citations (18)

Summary

We haven't generated a summary for this paper yet.