Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introducing higher order correlations to marginals' subset of multivariate data by means of Archimedean copulas (1803.07813v2)

Published 21 Mar 2018 in cs.DS and stat.CO

Abstract: In this paper, we present the algorithm that alters the subset of marginals of multivariate standard distributed data into such modelled by an Archimedean copula. Proposed algorithm leaves a correlation matrix almost unchanged, but introduces a higher order correlation into a subset of marginals. Our data transformation algorithm can be used to analyse whether particular machine learning algorithm, especially a dimensionality reduction one, utilises higher order correlations or not. We present an exemplary application on two features selection algorithms, mention that features selection is one of the approaches to dimensionality reduction. To measure higher order correlation, we use multivariate higher order cumulants, hence to utilises higher order correlations be to use the Joint Skewness Band Selection (JSBS) algorithm that uses third-order multivariate cumulant. We show the robust performance of the JSBS in contrary to the poor performance of the Maximum Ellipsoid Volume (MEV) algorithm that does not utilise such higher order correlations. With this result, we confirm the potential application of our data generation algorithm to analyse a performance of various dimensionality reduction algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.