Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Semantic Segmentation on Video Using Block Motion-Based Feature Interpolation (1803.07742v5)

Published 21 Mar 2018 in cs.CV

Abstract: Convolutional networks optimized for accuracy on challenging, dense prediction tasks are prohibitively slow to run on each frame in a video. The spatial similarity of nearby video frames, however, suggests opportunity to reuse computation. Existing work has explored basic feature reuse and feature warping based on optical flow, but has encountered limits to the speedup attainable with these techniques. In this paper, we present a new, two part approach to accelerating inference on video. First, we propose a fast feature propagation technique that utilizes the block motion vectors present in compressed video (e.g. H.264 codecs) to cheaply propagate features from frame to frame. Second, we develop a novel feature estimation scheme, termed feature interpolation, that fuses features propagated from enclosing keyframes to render accurate feature estimates, even at sparse keyframe frequencies. We evaluate our system on the Cityscapes and CamVid datasets, comparing to both a frame-by-frame baseline and related work. We find that we are able to substantially accelerate segmentation on video, achieving near real-time frame rates (20.1 frames per second) on large images (960 x 720 pixels), while maintaining competitive accuracy. This represents an improvement of almost 6x over the single-frame baseline and 2.5x over the fastest prior work.

Citations (19)

Summary

We haven't generated a summary for this paper yet.