Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A short survey on Newton polytopes, tropical geometry and ring of conditions of algebraic torus (1803.07001v1)

Published 19 Mar 2018 in math.AG

Abstract: The purpose of this note is to give an exposition of some interesting combinatorics and convex geometry concepts that appear in algebraic geometry in relation to counting the number of solutions of a system of polynomial equations in several variables over complex numbers. The exposition is aimed for a general audience in mathematics and we hope to be accessible to undergraduate as well as advance high school students. The topics discussed belong to relatively new, and closely related branches of algebraic geometry which are usually referred to as tropical geometry and toric geometry. These areas make connections between the study of algebra and geometry of polynomials and the combinatorial and convex geometric study of piecewise linear functions. The main results discussed in this note are descriptions of the so-called "ring of conditions" of algebraic torus.

Summary

We haven't generated a summary for this paper yet.