Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Haar-$\mathcal I$ sets: looking at small sets in Polish groups through compact glasses (1803.06712v4)

Published 18 Mar 2018 in math.GN and math.GR

Abstract: Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\mathcal I$ set in a Polish group. Here $\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\subset X$ of a Polish group $X$ is called Haar-$\mathcal I$ if there exists a continuous map $f:K\to X$ such that $f{-1}(B+x)\in\mathcal I$ for all $x\in X$. Moreover, $B$ is generically Haar-$\mathcal I$ if the set of witness functions ${f\in C(K,X):\forall x\in X\;\;f{-1}(B+x)\in\mathcal I}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\mathcal I$, and construct the corresponding distinguishing examples. We prove some results on Borel hull of Haar-$\mathcal I$ sets, generalizing results of Solecki, Elekes, Vidny\'anszky, Dole\v{z}al, Vlas\v{a}k on Borel hulls of Haar-null and Haar-meager sets. Also we establish various Steinhaus properties of the families of (generically) Haar-$\mathcal I$ sets in Polish groups for various ideals $\mathcal I$.

Summary

We haven't generated a summary for this paper yet.