Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Controlled Experiments for Personalised e-Commerce Strategies: Design, Challenges, and Pitfalls (1803.06258v2)

Published 16 Mar 2018 in stat.ME, cs.DM, and stat.AP

Abstract: Online controlled experiments are the primary tool for measuring the causal impact of product changes in digital businesses. It is increasingly common for digital products and services to interact with customers in a personalised way. Using online controlled experiments to optimise personalised interaction strategies is challenging because the usual assumption of statistically equivalent user groups is violated. Additionally, challenges are introduced by users qualifying for strategies based on dynamic, stochastic attributes. Traditional A/B tests can salvage statistical equivalence by pre-allocating users to control and exposed groups, but this dilutes the experimental metrics and reduces the test power. We present a stacked incrementality test framework that addresses problems with running online experiments for personalised user strategies. We derive bounds that show that our framework is superior to the best simple A/B test given enough users and that this condition is easily met for large scale online experiments. In addition, we provide a test power calculator and describe a selection of pitfalls and lessons learnt from our experience using it.

Citations (1)

Summary

We haven't generated a summary for this paper yet.