Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monocular Fisheye Camera Depth Estimation Using Sparse LiDAR Supervision (1803.06192v3)

Published 16 Mar 2018 in cs.CV

Abstract: Near field depth estimation around a self driving car is an important function that can be achieved by four wide angle fisheye cameras having a field of view of over 180. Depth estimation based on convolutional neural networks (CNNs) produce state of the art results, but progress is hindered because depth annotation cannot be obtained manually. Synthetic datasets are commonly used but they have limitations. For instance, they do not capture the extensive variability in the appearance of objects like vehicles present in real datasets. There is also a domain shift while performing inference on natural images illustrated by many attempts to handle the domain adaptation explicitly. In this work, we explore an alternate approach of training using sparse LiDAR data as ground truth for depth estimation for fisheye camera. We built our own dataset using our self driving car setup which has a 64 beam Velodyne LiDAR and four wide angle fisheye cameras. To handle the difference in view points of LiDAR and fisheye camera, an occlusion resolution mechanism was implemented. We started with Eigen's multiscale convolutional network architecture and improved by modifying activation function and optimizer. We obtained promising results on our dataset with RMSE errors comparable to the state of the art results obtained on KITTI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Varun Ravi Kumar (26 papers)
  2. Stefan Milz (23 papers)
  3. Martin Simon (21 papers)
  4. Christian Witt (8 papers)
  5. Karl Amende (5 papers)
  6. Johannes Petzold (2 papers)
  7. Senthil Yogamani (81 papers)
  8. Timo Pech (1 paper)
Citations (48)

Summary

We haven't generated a summary for this paper yet.