Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signless Laplacian determinations of some graphs with independent edges (1803.06135v1)

Published 16 Mar 2018 in math.CO

Abstract: {Signless Laplacian determinations of some graphs with independent edges}% {Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum ({\rm DQS}, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some {\rm DQS} graphs with independent edges are obtained.

Summary

We haven't generated a summary for this paper yet.