Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifiability of dynamical networks with partial node measurements (1803.05885v1)

Published 15 Mar 2018 in math.OC and cs.SY

Abstract: Much recent research has dealt with the identifiability of a dynamical network in which the node signals are connected by causal linear transfer functions and are excited by known external excitation signals and/or unknown noise signals. A major research question concerns the identifiability of the whole network - topology and all transfer functions - from the measured node signals and external excitation signals. So far all results on this topic have assumed that all node signals are measured. This paper presents the first results for the situation where not all node signals are measurable, under the assumptions that (1) the topology of the network is known, and (2) each node is excited by a known external excitation. Using graph theoretical properties, we show that the transfer functions that can be identified depend essentially on the topology of the paths linking the corresponding vertices to the measured nodes. A practical outcome is that, under those assumptions, a network can often be identified using only a small subset of node measurements.

Citations (80)

Summary

We haven't generated a summary for this paper yet.