Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

XNORBIN: A 95 TOp/s/W Hardware Accelerator for Binary Convolutional Neural Networks (1803.05849v1)

Published 5 Mar 2018 in cs.CV, cs.AI, cs.AR, cs.NE, and eess.IV

Abstract: Deploying state-of-the-art CNNs requires power-hungry processors and off-chip memory. This precludes the implementation of CNNs in low-power embedded systems. Recent research shows CNNs sustain extreme quantization, binarizing their weights and intermediate feature maps, thereby saving 8-32\x memory and collapsing energy-intensive sum-of-products into XNOR-and-popcount operations. We present XNORBIN, an accelerator for binary CNNs with computation tightly coupled to memory for aggressive data reuse. Implemented in UMC 65nm technology XNORBIN achieves an energy efficiency of 95 TOp/s/W and an area efficiency of 2.0 TOp/s/MGE at 0.8 V.

Citations (44)

Summary

We haven't generated a summary for this paper yet.