Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Ranking and the Cost of Sybil Defense (1803.05001v5)

Published 13 Mar 2018 in cs.DS and cs.SI

Abstract: Ranking functions such as PageRank assign numeric values (ranks) to nodes of graphs, most notably the web graph. Node rankings are an integral part of Internet search algorithms, since they can be used to order the results of queries. However, these ranking functions are famously subject to attacks by spammers, who modify the web graph in order to give their own pages more rank. We characterize the interplay between rankers and spammers as a game. We define the two critical features of this game, spam resistance and distortion, based on how spammers spam and how rankers protect against spam. We observe that all the ranking functions that are well-studied in the literature, including the original formulation of PageRank, have poor spam resistance, poor distortion, or both. Finally, we study Min-PPR, the form of PageRank used at Google itself, but which has received no (theoretical or empirical) treatment in the literature. We prove that Min-PPR has low distortion and high spam resistance. A secondary benefit is that Min-PPR comes with an explicit cost function on nodes that shows how important they are to the spammer; thus a ranker can focus their spam-detection capacity on these vulnerable nodes. Both Min-PPR and its associated cost function are straightforward to compute.

Summary

We haven't generated a summary for this paper yet.