Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Piecewise Convex Relaxations for Global Optimization of Optimal Power Flow (1803.04633v1)

Published 13 Mar 2018 in math.OC and cs.SY

Abstract: Since the alternating current optimal power flow (ACOPF) problem was introduced in 1962, developing efficient solution algorithms for the problem has been an active field of research. In recent years, there has been increasing interest in convex relaxations-based solution approaches that are often tight in practice. Based on these approaches, we develop tight piecewise convex relaxations with convex-hull representations, an adaptive, multivariate partitioning algorithm with bound tightening that progressively improves these relaxations and, given sufficient time, converges to the globally optimal solution. We illustrate the strengths of our algorithm using benchmark ACOPF test cases from the literature. Computational results show that our novel algorithm reduces the best-known optimality gaps for some hard ACOPF cases.

Citations (35)

Summary

We haven't generated a summary for this paper yet.