Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Banded Matrix Fraction Representation of Triangular Input Normal Pairs (1803.03904v1)

Published 11 Mar 2018 in stat.ME, cs.SY, eess.SY, math.OC, and math.RT

Abstract: An input pair $(A,B)$ is triangular input normal if and only if $A$ is triangular and $AA* + BB* = I_n$, where $I_n$ is theidentity matrix. Input normal pairs generate an orthonormal basis for the impulse response. Every input pair may be transformed to a triangular input normal pair. A new system representation is given: $(A,B)$ is triangular normal and $A$ is a matrix fraction, $A=M{-1}N$, where $M$ and $N$ are triangular matrices of low bandwidth. For single input pairs, $M$ and $N$ are bidiagonal and an explicit parameterization is given in terms of the eigenvalues of $A$. This band fraction structure allows for fast updates of state space systems and fast system identification. When A has only real eigenvalues, one state advance requires $3n$ multiplications for the single input case.

Citations (9)

Summary

We haven't generated a summary for this paper yet.