Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Adversarial Examples via Neural Fingerprinting (1803.03870v3)

Published 11 Mar 2018 in cs.LG

Abstract: Deep neural networks are vulnerable to adversarial examples, which dramatically alter model output using small input changes. We propose Neural Fingerprinting, a simple, yet effective method to detect adversarial examples by verifying whether model behavior is consistent with a set of secret fingerprints, inspired by the use of biometric and cryptographic signatures. The benefits of our method are that 1) it is fast, 2) it is prohibitively expensive for an attacker to reverse-engineer which fingerprints were used, and 3) it does not assume knowledge of the adversary. In this work, we pose a formal framework to analyze fingerprints under various threat models, and characterize Neural Fingerprinting for linear models. For complex neural networks, we empirically demonstrate that Neural Fingerprinting significantly improves on state-of-the-art detection mechanisms by detecting the strongest known adversarial attacks with 98-100% AUC-ROC scores on the MNIST, CIFAR-10 and MiniImagenet (20 classes) datasets. In particular, the detection accuracy of Neural Fingerprinting generalizes well to unseen test-data under various black- and whitebox threat models, and is robust over a wide range of hyperparameters and choices of fingerprints.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sumanth Dathathri (14 papers)
  2. Stephan Zheng (31 papers)
  3. Tianwei Yin (12 papers)
  4. Richard M. Murray (41 papers)
  5. Yisong Yue (154 papers)

Summary

We haven't generated a summary for this paper yet.