Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A user-friendly condition for exponential ergodicity in randomly switched environments (1803.03456v4)

Published 9 Mar 2018 in math.PR and math.DS

Abstract: We consider random switching between finitely many vector fields leaving positively invariant a compact set. Recently, Li, Liu and Cui showed that if one the vector fields has a globally asymptotically stable (G.A.S.) equilibrium from which one can reach a point satisfying a weak H\"ormander-bracket condition, then the process converges in total variation to a unique invariant probability measure. In this note, adapting the proof of Li, Liu and Cui and using results of Bena\"im, Le Borgne, Malrieu and Zitt, the assumption of a G.A.S. equilibrium is weakened to the existence of an accessible point at which a barycentric combination of the vector fields vanishes. Some examples are given which demonstrate the usefulness of this condition.

Summary

We haven't generated a summary for this paper yet.