Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degrees of Infinite Words, Polynomials, and Atoms (Extended Version) (1803.03158v1)

Published 8 Mar 2018 in cs.FL

Abstract: We study finite-state transducers and their power for transforming infinite words. Infinite sequences of symbols are of paramount importance in a wide range of fields, from formal languages to pure mathematics and physics. While finite automata for recognising and transforming languages are well-understood, very little is known about the power of automata to transform infinite words. The word transformation realised by finite-state transducers gives rise to a complexity comparison of words and thereby induces equivalence classes, called (transducer) degrees, and a partial order on these degrees. The ensuing hierarchy of degrees is analogous to the recursion-theoretic degrees of unsolvability, also known as Turing degrees, where the transformational devices are Turing machines. However, as a complexity measure, Turing machines are too strong: they trivialise the classification problem by identifying all computable words. Finite-state transducers give rise to a much more fine-grained, discriminating hierarchy. In contrast to Turing degrees, hardly anything is known about transducer degrees, in spite of their naturality. We use methods from linear algebra and analysis to show that there are infinitely many atoms in the transducer degrees, that is, minimal non-trivial degrees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.