Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferencing Based on Unsupervised Learning of Disentangled Representations (1803.02627v1)

Published 7 Mar 2018 in cs.CV, cs.AI, and cs.NE

Abstract: Combining Generative Adversarial Networks (GANs) with encoders that learn to encode data points has shown promising results in learning data representations in an unsupervised way. We propose a framework that combines an encoder and a generator to learn disentangled representations which encode meaningful information about the data distribution without the need for any labels. While current approaches focus mostly on the generative aspects of GANs, our framework can be used to perform inference on both real and generated data points. Experiments on several data sets show that the encoder learns interpretable, disentangled representations which encode descriptive properties and can be used to sample images that exhibit specific characteristics.

Citations (6)

Summary

We haven't generated a summary for this paper yet.