Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The monotonicity rules for the ratio of two Laplace transforms with applications (1803.02513v1)

Published 7 Mar 2018 in math.CA

Abstract: Let $f$ and $g$ be both continuous functions on $\left( 0,\infty \right) $ with $g\left( t\right) >0$ for $t\in \left( 0,\infty \right) $ and let $ F\left( x\right) =\mathcal{L}\left( f\right) $, $G\left( x\right) =\mathcal{L }\left( g\right) $ be respectively the Laplace transforms of $f$ and $g$ converging for $x>0$. We prove that if there is a $t{\ast }\in \left( 0,\infty \right) $ such that $f/g$ is strictly increasing on $\left( 0,t{\ast }\right) $ and strictly decreasing on $\left( t{\ast },\infty \right) $, then the ratio $F/G$ is decreasing on $\left( 0,\infty \right) $ if and only if \begin{equation*} H_{F,G}\left( 0{+}\right) =\lim_{x\rightarrow 0{+}}\left( \frac{F{\prime }\left( x\right) }{G{\prime }\left( x\right) }G\left( x\right) -F\left( x\right) \right) \geq 0, \end{equation*} with \begin{equation*} \lim_{x\rightarrow 0{+}}\frac{F\left( x\right) }{G\left( x\right) } =\lim_{t\rightarrow \infty }\frac{f\left( t\right) }{g\left( t\right) }\text{ \ and \ }\lim_{x\rightarrow \infty }\frac{F\left( x\right) }{G\left( x\right) }=\lim_{t\rightarrow 0{+}}\frac{f\left( t\right) }{g\left( t\right) } \end{equation*} provide the indicated limits exist. While $H_{F,G}\left( 0{+}\right) <0$, there is at leas one $x{\ast }>0$ such that $F/G$ is increasing on $\left( 0,x{\ast }\right) $ and decreasing on $\left( x{\ast },\infty \right) $. As applications of this monotonicity rule, a unified treatment for certain bounds of psi function is presented, and some properties of the modified Bessel functions of the second are established. These show that the monotonicity rules in this paper may contribute to study for certain special functions because many special functions can be expressed as corresponding Laplace transforms.

Summary

We haven't generated a summary for this paper yet.