Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of a chemo-repulsion model with quadratic production. Part II: Analysis of an unconditional energy-stable fully discrete scheme (1803.02391v2)

Published 6 Mar 2018 in math.NA and cs.NA

Abstract: This work is devoted to the study of a fully discrete scheme for a repulsive chemotaxis with quadratic production model. By following the ideas presented in [Guilen-Gonzalez et al], we introduce an auxiliary variable (the gradient of the chemical concentration), and prove that the corresponding Finite Element (FE) backward Euler scheme is conservative and unconditionally energy-stable. Additionally, we also study some properties like solvability, a priori estimates, convergence towards weak solutions and error estimates. On the other hand, we propose two linear iterative methods to approach the nonlinear scheme: an energy-stable Picard method and Newton's method. We prove solvability and convergence of both methods towards the nonlinear scheme. Finally, we provide some numerical results in agreement with our theoretical analysis with respect to the error estimates.

Citations (27)

Summary

We haven't generated a summary for this paper yet.