The generalised Baker--Schmidt problem on hypersurfaces (1803.02314v2)
Abstract: The Generalised Baker--Schmidt Problem (1970) concerns the $f$-dimensional Hausdorff measure of the set of $\psi$-approximable points on a nondegenerate manifold. There are two variants of this problem, concerning simultaneous and dual approximation. Beresnevich--Dickinson--Velani (in 2006, for the homogeneous setting) and Badziahin--Beresnevich--Velani (in 2013, for the inhomogeneous setting) proved the divergence part of this problem for dual approximation on arbitrary nondegenerate manifolds. The corresponding convergence counterpart represents a major challenging open question and the progress thus far has only been attained over planar curves. In this paper, we settle this problem for hypersurfaces in a more general setting, i.e. for inhomogeneous approximations and with a non-monotonic multivariable approximating function.