Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Designs on Graphs: Sampling, Spectra, Symmetries (1803.02235v3)

Published 6 Mar 2018 in math.CO, cs.NA, math.FA, math.NA, and math.SP

Abstract: Spherical Designs are finite sets of points on the sphere $\mathbb{S}{d}$ with the property that the average of certain (low-degree) polynomials in these points coincides with the global average of the polynomial on $\mathbb{S}{d}$. They are evenly distributed and often exhibit a great degree of regularity and symmetry. We point out that a spectral definition of spherical designs easily transfers to finite graphs -- these 'graphical designs' are subsets of vertices that are evenly spaced and capture the symmetries of the underlying graph (should they exist). Our main result states that good graphical designs either consist of many vertices or their neighborhoods have exponential volume growth. We show several examples, describe ways to find them and discuss problems.

Citations (20)

Summary

We haven't generated a summary for this paper yet.