Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

John's Walk (1803.02032v2)

Published 6 Mar 2018 in stat.ML, cs.CG, cs.DS, and stat.CO

Abstract: We present an affine-invariant random walk for drawing uniform random samples from a convex body $\mathcal{K} \subset \mathbb{R}n$ that uses maximum volume inscribed ellipsoids, known as John's ellipsoids, for the proposal distribution. Our algorithm makes steps using uniform sampling from the John's ellipsoid of the symmetrization of $\mathcal{K}$ at the current point. We show that from a warm start, the random walk mixes in $\widetilde{O}(n7)$ steps where the log factors depend only on constants associated with the warm start and desired total variation distance to uniformity. We also prove polynomial mixing bounds starting from any fixed point $x$ such that for any chord $pq$ of $\mathcal{K}$ containing $x$, $\left|\log \frac{|p-x|}{|q-x|}\right|$ is bounded above by a polynomial in $n$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.