Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elliptic Stable Envelopes and Finite-dimensional Representations of Elliptic Quantum Group (1803.01540v2)

Published 5 Mar 2018 in math.QA, math-ph, math.AG, math.MP, and math.RT

Abstract: We construct a finite dimensional representation of the face type, i.e dynamical, elliptic quantum group associated with $sl_N$ on the Gelfand-Tsetlin basis of the tensor product of the $n$-vector representations. The result is described in a combinatorial way by using the partitions of $[1,n]$. We find that the change of basis matrix from the standard to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight function obtained in the previous paper[Konno17]. Identifying the elliptic weight functions with the elliptic stable envelopes obtained by Aganagic and Okounkov, we show a correspondence of the Gelfand-Tsetlin bases (resp. the standard bases) to the fixed point classes (resp. the stable classes) in the equivariant elliptic cohomology $E_T(X)$ of the cotangent bundle $X$ of the partial flag variety. As a result we obtain a geometric representation of the elliptic quantum group on $E_T(X)$.

Summary

We haven't generated a summary for this paper yet.