Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal bounds for the Hardy--Littlewood inequalities on multilinear forms (1803.01397v1)

Published 4 Mar 2018 in math.FA

Abstract: The Hardy--Littlewood inequalities for multilinear forms on sequence spaces state that for all positive integers $m,n\geq2$ and all $m$-linear forms $T:\ell_{p_{1}}{n}\times\cdots\times\ell_{p_{m}}{n}\rightarrow\mathbb{K}$ ($\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$) there are constants $C_{m}\geq1$ (not depending on $n$) such that [ \left( \sum_{j_{1},\ldots,j_{m}=1}{n}\left\vert T(e_{j_{1}},\ldots,e_{j_{m}})\right\vert {\rho}\right) {\frac{1}{\rho}}\leq C_{m}\sup_{\left\Vert x_{1}\right\Vert ,\dots,\left\Vert x_{m}\right\Vert \leq 1}\left\vert T(x_{1},\dots,x_{m})\right\vert, ] where $\rho=\frac{2m}{m+1-2\left( \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}\right) }$ if $0\leq\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}\leq\frac{1}{2}$ or $\rho=\frac{1}{1-\left( \frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}\right)}$ if $\frac{1}{2}\leq\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}<1$. Good estimates for the Hardy-Littlewood constants are, in general, associated to applications in Mathematics and even in Physics, but the exact behavior of these constants is still unknown. In this note we give some new contributions to the behavior of the constants in the case $\frac{1}{2}\leq\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}<1$. As a consequence of our main result, we present a generalization and a simplified proof of a result due to Aron et al. on certain Hardy--Littlewood type inequalities.

Summary

We haven't generated a summary for this paper yet.