Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laser map aided visual inertial localization in changing environment (1803.01104v1)

Published 3 Mar 2018 in cs.RO

Abstract: Long-term visual localization in outdoor environment is a challenging problem, especially faced with the cross-seasonal, bi-directional tasks and changing environment. In this paper we propose a novel visual inertial localization framework that localizes against the LiDAR-built map. Based on the geometry information of the laser map, a hybrid bundle adjustment framework is proposed, which estimates the poses of the cameras with respect to the prior laser map as well as optimizes the state variables of the online visual inertial odometry system simultaneously. For more accurate cross-modal data association, the laser map is optimized using multi-session laser and visual data to extract the salient and stable subset for localization. To validate the efficiency of the proposed method, we collect data in south part of our campus in different seasons, along the same and opposite-direction route. In all sessions of localization data, our proposed method gives satisfactory results, and shows the superiority of the hybrid bundle adjustment and map optimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xiaqing Ding (12 papers)
  2. Yue Wang (676 papers)
  3. Dongxuan Li (1 paper)
  4. Li Tang (59 papers)
  5. Huan Yin (29 papers)
  6. Rong Xiong (115 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.