Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting non-causal artifacts in multivariate linear regression models (1803.00810v1)

Published 2 Mar 2018 in stat.ML and cs.LG

Abstract: We consider linear models where $d$ potential causes $X_1,...,X_d$ are correlated with one target quantity $Y$ and propose a method to infer whether the association is causal or whether it is an artifact caused by overfitting or hidden common causes. We employ the idea that in the former case the vector of regression coefficients has 'generic' orientation relative to the covariance matrix $\Sigma_{XX}$ of $X$. Using an ICA based model for confounding, we show that both confounding and overfitting yield regression vectors that concentrate mainly in the space of low eigenvalues of $\Sigma_{XX}$.

Citations (33)

Summary

We haven't generated a summary for this paper yet.